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A GENERAL, ANATLYTICAL SOLUTION TO THE
PROBLEM CF PHOTOGRAMMETRY

ABSTRACT

An analytical treatment of the general problem of photogrammetiry is
developed which only requlres that obJject point, center of projection and
corresponding image point are collinear for any one ray present in a specific
photogrammetric measuring procedure. The qorresponding formules, eXpressing
the geometrical relation existing between the spetial coordinates of the
object, the plate coordinates of the corresponding image and the elements of
orientation, are the bases for a rigorous least squares adjustment, whereby
botﬂ the lmege-coordinates meesured on ; comparator, and the given control

date may be considered as erroneocus. The corresponding system of normel

equations, which is shown to be typical for any photogrammetric measuring

problem;- 15 used-to form & system of reduced normal eguatlions, the unknowns

of which-are-either the elements of orlentation or the spatial coordinates of
the model .~ The-mpplleation of matrix calculus not-only simplifies the-presen-
tatiomrbut-reduces the "bookkeeping® -éffort", while-establishing the-corre-~
sponding ‘program for electronic computers. A special chapter deals with the
problem of incorporating ﬁdditional geametric conditions as they may exist
between any one or all of the unknowns of the solution. The applicetion of
the described method for the special cases of "strip and block triangulation”
is ireated, whereby attentlon is given to the problem of solving the corre-~
sponding system of reduced normal equations. For an unlimited strip, a
rigorous solution is presented, which is based on the stepwlse ellmination of
certaln groups of the unknowns. Finally, an iterative solution 1s given which

mekes use of the relaxation method.
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I. INTRODUCTION

Theoretical and prictical work concerned with the development and testing
of anélytical solutions for the reduction of photogrammetric records has, in
the past, proven the feasibllity of such a method. Such a project was initi-
ated at the Ballistic Research Laboratorles, Aberdeen Proving Ground, Maryland
with the gtudy of the orientation of a single camera followed by & solution
for the problem of triangulation by a comblnetion of twe photogrammetric
cameras. These two phases have been presented in the BRL Reports No. 880 [i]*
and No. 961 [2]. The phase logically to follow 1s the development of en ]
analytical solutlon for the n-camera case. The problem of trlangulating, for
example, the spacg-tlme coordinates of polnts of trajectories recorded.simul-
taneously on more than two photogrammetric camersas belongs in this category,
as well as the problems of strip and block tfiangulation.

In [21 an spproach was outlined which would heve made it possible to
extend the two camera solutlion to the treatment of the n-camera problem. The.
most serious objection to that approach is the fact that, in such a case, the
mafrix, agsociated with the vectors of the residuals, loses more and more its
diagonal character. Thus, the basis for the feaslbility of the corresponding
numerical‘solution is being impaired. (Compare [2], page 22 and schematics
on page 48). Furthermore, the solution becomes cumbersome if additional
informetion must be 1ntfoduced expressing certain geometric condltions con-
cerned with the coordinates of the polnts of the object to be triengulated.
last but not least the "bookkeeping effort" in the preparation of the
electronic computations would have been conslderable, due to the necesslity of
distinguishing between various kinds of control data and corresponding con-
ditional equations, which, to make things worse, are of somevwhat different
character, ‘depending on the number of camerss involved in any 6pe specific
trianguwlation.

The following solution overcomes these objections.  As an additional
feature; thls solutlion is based in its entirety on the simplest mathematical

'presentation concelvable, The use of matrix calculus for setting up a system

of reduced normal équations is especlally sulted for electronlc computers.

~ * Reference at the end of the paper,
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The followlng presentetion of the solution is complete with respect to
derivation of the necessary formulas, differential coefficlents and auxllia~

ries. However, with respect to general remerks and basic principles, referring . . 3
to photogrammetric a&s well as to statistical subjects, reference wlll occasion-
ally be made to [i] and [é] which are considered to be avallable to the casual

reader,
I1. THE GENERAL PROBLEM OF ANALYTICAL FHOTOGRAMMETRY

The general problem of analytical photogrammetry may be defined as the
simiitaneous restitution of the orientations of any number of photogremmetric
-records and the reconstruction of the object space by triangulating corresp-
onding rays. There must be no limitations as to the type and orientation of
any one camera, so long as the corresponding‘bundle‘of rays corresponds to
the'principle of a central.perSPective. No limitations must be made with re-
spect to the nurber, type and location of control data including absolute .
given, partiel'given and relatiee roints, so long as the given information

‘satisfies at least the geometrical requirements for.a unique solution.

In a general solution it must be possible to enforce eny number of geo-

.

metric conditions concerned with any one or all orientation parameters, as well:
as with any one or all coordinates of the points of the object space. Further-
more, it must be possible to consider both the plate measurements and the given
control dafa as erroneous, whereby the compﬁtation must ellow the introduction
of individual welghting factors. TFinally, a general solution must derive, from
the treatment of the redundant information, such expressions of precision which
willl give Information sbout the mean error of an observation of unit welght -
the ﬁean errors of the orientation elements as well as of the triangulated

coordinates.

T™rT & MOE AAKTTIMTAN AT AN _TTRDADTIY A o ANT ™
Lld e LA WAVWNLALL LWIN WD AU LN L L L AR .LJ.._.LEA DVJ-LCI

CONDITION NECESSARY TG SOIVE THE PROBIEM
OF ANATYTICAL PHOTOGRAMMETRY '

i)

For later reference, a description of a few fundamental photogrammetric
operators seecms eppropriate.
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the 80 called center of projecti

A, The photogrammetric bundle and its orientation

By connecting any identifiable detail on the photographic plate with a
point situated outside of the plane of the photograph, it is possible to
construct a bundle of rays. (Fig. 1) The point, thus common to all rays, is
on, dencted by O. It is hardly possible, and
for our- purposes ceg}§%g;y unnecessary, to interpret this point physically.
The position of this,relative to the photographic plate is fixed if, for
example, an arbltrarily oriented rectangular plate coordinate system (x.and Y)
is introduced in which the base of the perpendicular to the plane of the plate
through O, denoted by P (principal point), has the coordinates X, and Ypr The
length of this perpendicutar, denoted by ¢, is a scale factor and must not be
physically interpreted. The sole purpose of‘this phase of the photogrammetric
evaluation technique is to provide means suited for an unambiguous construction
of a bundle of rays. This is accomplished by measuring x,.y plate coordinates
of identifiable detail on the photograph in the same plate coordinate system,
ip whilch the point P is being described by its parameters xp and yp. The
parameters c, xp and yp are commonly referred to as the elemenﬁs cof interior

orientation.

After such a bundle is obtained, the problem is to orient it unambiguously
in space, (1) by assigning to the point 0, a specific spatial position ex-
pressed, for example, by three linear parameters, Xo’ Yo and Z0 wlth respect to
an erbitrarily established Cartesian spatial coordinate system; (2) by de-

fining with respect to the axes of thils coordinate system, the direction of the

‘vector as formed by the extension of the line PO into space by two rotational

components, (e.g., @ and w rotatlons), and (3) by establishing the spatial
rosition of the ?late coordinate’ system by a third rotation (swing angle k )
around the vector described, and positioned according to (2).

The parameters Xo P Yo’ Zo » O, w, K are commonly referred to as the

elements of exterlor orientation.

Both groups, the elements of Interior and the elements of exterilor
orlentation, shall from now on be consldered Jointly if reference is mmde

simply to the elements of orientation. The notation O 1s used if all

TECESICAL Litiny
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orlientation elements are belng considered present in a specific photogrammetric
measuring system, while the notation O 1s used 1f only a group assoclated .

with a certain cemera station I 1s belng regarded.
B. The control data and the associeted residuals. -
It

ig common practice to refer to points known with their absolute

5

sition as #bsolute control points, to points known with either one or two
positioning parameters as partial control points, and to points not known at
all with respect to thelr absolute position, as relative control points. Be-
cause all these polnts belong to the object photographed, it is conceivablé to
refer to them in their totality simply as control points, and denote thelr
spatial positions by X , while the spatial location of eny one individual
polnt J shall he denoted by Xj . In case the glven control polnt coordinates. -
are not flawless, it willl become necessary in a general solution to treat these
parameters like measurements and allow for corresponding corrections in the
least squares solution. The designation V refers to the corrections of all .
control data and correspondingly VJ is being used 1f only a specific control
point "J" is considered.

C. The plate measurements and the associated residuals.

As described in (A), any individuel ray within a photogrammetric bundle

PRt wr oA xr

ents x and y. In anslogue

ct

the above ndtation, we shall denote all plate coordinates involved In a spe-.
cific photogrammetric measuring system by X and the plate coordinates of a
late by Xij. Correspondingly, we denote
the total number of plate measurements and their residuels. by ( and Vv
respectively, and the plete measurements and thelr residuals associsted with

a specific point, on a specific photograph by Oiiand Vij .

The object space (the model) can be visualized as the integrated effect

'produced by the intersections of corresponding rays, each of which is po-

1
Ze location

§

corresponding

&

stored on the specific photographic record.



With the notation introduced above we may consequently write:

= ¢»( ) : (1)
X = ¢ (O,x

Formila (1) avnrecees the genaral nrohlam af nhotasprammetry indicating o

A Wl d B et \-l-‘ , LAy‘- “wRDCD wilts EGJJ\-J. [+ = PJ. WV LGCIN WL HIIU ‘JUB* Sl i HAr Wb J , e £ Ny e Ve U*“E "l

functional relation between the model X , the plate coordinates X and
the orientation parameters 0o . Introduclng the plate measurements, their
residuals end the residuals of the given control data, we obtain, with respect

to (l), & system of observational equations of the form:

f(v,V) = F(O,X, £) (2)

The roots of the correspondiﬁg normsl equatlion syatem represent the numerical
solutlon of the general photogrammefric problem., The result, as expressed by
" formula (1), has been explained as an integrated effect of the contribution

of all the individuel rays. Because no one ray distinguishes itaelf baaiéally
from any other ray, this interpretation suggests that for an individual ray,

a corresponding functional relation exists which 1s obtained by simply
indexing the corresponding parameters, thus, leading, according to formula

(2), to the corresponding cbservational equations:

To comprehend this result we recollect that the bundle of rays of an idealized
physicel photogrammetric camera has its geometrical representation in the

considered as a population, the members of which are the individual rays. Any
algebraic expression.representing a single ray of such a bundle, may thus be
envisaged as representing, collectively, the bundle in ite entirety, by simply
amitting the index denoting the specific rey.

Because any one photogrammetric bundle is based on the concept of the
central pérspective, and any one photogrammetric problem may be considered as
a cambination of any number of such bundles, it follows that an equation
representing the geométrical properties of an individual ray can be consldered

as adequate to express, collectively, the problem of analytical photogrammetry.

10
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Consequently, it must be possible to develop an analytical sclution for the
most general problem of photogrammetry, based solely on formulas vwhich express
the geometrical properties of an individual ray belonging to a bundle of rays,

formed according to the concept of the central perspective.

The corresponding relation is the condition that the center of projection

0, the image point r and the object point R are collinear. (Fig. 2)

From Figure 2 we obtaln:

R= p.r, where u is a scale factor (%)

The projection of the vectors'F'and'ﬁhrespectively into the three coordinate

planes glves the component equations:

X= Xo + Ju
Y = Yo + WV (3)
72 = Z0 + W

The triplet of formulas (5) is the analyticel expression for the condition
that the points 0, r and R lie on a straight line,

By eliminating the scele factor p in formulaes (5) we obtein:

where (X) =X - Xo
u
(x) = (2) 2
(¥) =Y - ¥, (6)
v
(¥) =(2) 3
(z2) =2 - 2,
From Flg. 2 we read directly:
— o A N
r =1iu+ jv +kw = ix + Jy + kc (7)

11
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whereby the 'tra,nsfométion matrix of the two vector triplets is:

| ¢ 3 X
1| f1i 13 1k
) 103 (8)
x | \ ki xJ Kk

‘Denoting, for example, the two rotational angles between the two vector.

triplets according to Figure 2 with a and w, we obtain:

W=XcosQ-ysinasinw + c*sin @ cos ®

<]

Yy=vycosw+c sinw : - (9)
w=-xs8lnag - ycos @ slnw+c cos acosw

From Figure 3 we obtain: (f

]

X = -(x - xp) cos kK =~ (y - yp) sin K« (10)

« |
I

= - - X gln Kk + - cos K
(x 1:,) (y yp)

where x and y are the plate coordinates of an image point in an arbltrarily

oriented rectangular reference system (plate coordinate system).

‘Substituting (10) into (9) and using (6) we have:

@[y s ey ven]

Q o] ' .
: (11)
Lo @ ¢ Goys, re ]
with Q = (x-#p)Cl +(y-y )e; + e F
and
‘cl [(X)Al + (1")]3l + (Z)'cl]
x= ' +x
* P | (12)
e[GO, + (13, + (2)c,]
y = g e + yp

withq = (X) D+ (Y)E + (Z) F

13



xy-plane as diapositive seen from O

FIGURE 3
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vhere we have denoted as essentially direction cogines:

Al = -co8 @ cos8 K + 8ln @ 8ln w sin x

B1 = ~cos @ sin K

C1 = pln o cos X + cos @ sin w sin K

A, = -cos @ sin k - 8in @ sin @ OB K (13)
B

2=COBLDCOS K

1}

c gin @ sin & -cos @ ain o coBs K

NS

D =6g8in @ cos @

=3
H

sin w

=
]

co8.d cOo8

Each of the pair of formulas (11) and (12) represent the algebraic
expression for the gecmetrical conditlon of co-linearlty of the polnts O, r
and R, solved expiicitly for the coordinates of polnt R in the 1, J, k system
and of polnt r 1In the ?, 3, %:syatem, respectively.- The symmetrical érrangemeht
of the formulas 1s a direct consequence of the reverslbllity of any central
perspective. (compare, [1] page 8)

In [2] the algebraic solution was continued by eliminating such‘Xi, X,
and Zi's from the golgtien which were not glven as control data. This s;ep led,
for relative control points, to an algebralc expression for the condition of
intersection, and correspondingly for'partiélly glven control points, to the
condition of intersection at elther one or two given control coordinates. As a
direct éOnsequence of that approaéh, different types of conditional equations
were obtained for the different types of control pointa. To complicate the
situation further, the number of any particular set of such conditlopal equations
depends on the number of cemera stations involved in any specific triangulation
problem,

15



The most serious objection,against the aﬁproach chosen in [2] results
from the fact that, for the condition of intersection, it 1is necessary to hgve
at least four, and undef éertain conditions even six platé coordihate méaéuré-
ments together with their residuals in any single conditional equation. '
- Furthermore, in the cese of multi-camere triangulation, the same residuals.
appear 1n more than cne conditional equation, making a rilgorous least squaréé
treatment laborious, or in more domple; cases, even impractical.

The coordinates of the relative and partial control points not'given at
the outset of the computations become known in the solution, as presented in

| [2] , only implicitily as functions of the adjusted plate measurements and
the orientstion elements. The introdqctibn of any additionsl géometric con-
ditibna ag they may exist for any one or all of these coordinates reqﬁires'

conplex mathematicel manipulations, prohibitive from the standpoint of com-
puting economy. -

These diffleulties have been avoided In the present solution by including

the. elimination of the unknown coordinates of the model in the process. of the -

numericel treatment. In other vords, instead.of.elimiﬁating algebraically the
~ unknown Xi, Yi and Zi's beforehand, in the system of formulas (12), these
quantitles are carried as unknowns together wlth the orientation elements and

are golved for during the numerical solution.

All of the beneficial consequences of this approach will become evident
iﬁ'the'least squares solutiocn as described In the next chapter. It suffices
to mention here the most important features: ' :

(1) Each point, without regard to i&s cheracter as absolute, partial or
relative control point is being treated alike, thus giving rise to two
equations, of the form of formulas (12), for each camera station at which the
point was recorded. Any‘giVen information for example, in the form of spatial
coordinates, 15 introduced by simply eliminating the corresponding parameter
corrections fram the sequence of unknowns in the least squares solution.
Therefore, all points are treated with only one basic set of equations,
(formulas {12)), which are explicit in terms of the measured Plate coordinates
x and y, respectively. |

16
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(2) The fact that the coordinates of the points of the model, to be
triengulated are carried as unknowns in the solution, makes 1t possible to
introduce readily any additional existing geometric conditions for any one
or all of these coordinates.,

IV, THE LEAST SQUARES SOLUTION

The formulas (12) express the plate coordinetes x and y as functions of

the orientation elements and the spatial coordinates of the corresponding

point J photographed at.a certain camer

we may therefore write in general terms, according to formula (3):
ﬁx__l 1+ qu.j =,Fl [(01;05.1 K ,XO,YO’ZO’C’XP)ZL’ (X + VX, Y + VY’ AR )J]

go+v =Py [(aw, kX ,Y orZarCrTg)ys (K + Vg ¥ 4 Vy, 2+ VZ)J]

‘From the Taylbr expénsion for the right hand side of the eguatioms (1%4),

neglecting terms of second and higher order, we obtain the obgervational

_eqpations:
aF . aF a aF e aF aF aF
la la laq
"xij'(ax—E x*EY—EVI+Ez—EVz)J_(§—ﬂa+&D—Am+B—AK +3_AX
OFy OF) OF,  OF 9, F
M- o’fa?&o*ﬂ*ﬁp) (a—“ r‘“ a—AZ) y
’ (15)

aF2

v ‘(aicg%‘}x+3?3%‘vy+szg%{’z) (wﬁo‘*am—ﬂ‘“a—“ + 3%,

an BF2 BF2 aF2 aF aF
B—Y—oﬂyoi'gz—oﬂzo‘l'wﬂc +r&yp P) (B—Ax B—M rﬂZ) iJ
where
- Ad =x°, - £
X;J i1j xiJ
- Ad =y - 8
i 13 Y14



The V are the nofmali;ed V-residuals according to the formula:

B} :
v=ve : () -

ng end yiJ are computed with formulas (12) and the approximation values ot

the unknowns which are denoted by "o . It is obvious that in any one specific
set of obaervational equations may appear either certain coordinate corrections
[k>< or the corresponding residual errors -\f depending on the character of
the oblect point under conaiderationg With the introduction of the V-residuals,
according to formula (16); each ray has been assigned a specific group of such
residuals, Such an approach is desirable from the nurerical standpoint, be-
cause any correlation is avolded between the coefficieﬁts of the matrix
asgociated with the residuals of the various rays, intersecting at a‘specifib
point. From the theoretlical stﬁndpoint such a solution seemeg to be advantageous
bé%gﬁse the individual bundles of rays will conform to the pattern of the con- |
trol data without undue restraint. In paragraph (P) of this chapter the possi-
bility will be discussed of arranging the least squares adJustment in such a
way that for each glven .control cocordinate only one speclfic resldual V 1s

obtained, independent of the number of rays intersecting at the point wd

conslderation.

The relation between the approximation values and the final values of the
unknowns 18 given by:

a = ao +AQ c = co +AcC
o =o + A x =x0 +Ax
P P p
0 ' a
K =K + A4k = + A
, 2™ Y p
o . O (17)
XO-XO+AXO 5° J"'ij_
o - o
Y Y + A Y Y=Y,+A4Y
0 J 7J J
o ‘ o
ZO_ZO+AZO , ZJ"ZJ+AZJ

18



" A, A Direct Solution

Using matrix notation, the system of observatiocnal equations for an m-ray
solution, according to formulas (3) or (15), may be written as:

a1, 7 3 IR T 7
A vy By Ay FQ'
Az V2 B2 | |B2 2
Az V3 B3| |23 Ly
- 1= (18)
[ ] ® ‘ [ ] | [ ] -
[ [ ] [ [ L J
. A Vin B | {#m Qm
L. JL 5 4t K L .|

The - A] are the coefficient matriées of the correspoﬁding regidusl vectors
Vi . In case the absolutely given control data are contidered flawless
A'= A2=A3= * o8 = Am= I
the unit matrix., The B{ =re the coefficient matrices of the vecfors of the
corresponding perameter correctlons A| . The f; are the vectors of the
gbsolute tei'ms of the observational equatlons., We may rewrlte the system of

A nsrrndd mnal aniin +4 mnm el Tard man bodtimn an Au =z B A - 0 {
observational equations wit HOGATLION 88 AV F D 47 i \

with the welghts P

10\
7 )

Assuming the cbservations to be independent and normally distributed the most
probable values of the unknowns are cbtalved by minimizing vl Py , where
P denotes the weight matrix '

P= P.5 ‘ . . . (20)

19



Anjindividu&l P; matrix designates the welghts of the plate measurements and
of the control data, as .they pertaln to a specific ray. The introduction of
veighting factors for the plate measurements may become necessary to express
varylng degrees of precision associated with the original observations. Such
variations mey arise from the method of measqz;ng, the varying lmage quality
caused by loss of definition towards the edges of the photograph, or from a
decreage of accuracy with whlch the distortion correction is known for lmage
points at increasing radial distances from the center of the plate. Varilous
degrees of dependabiliﬁ&lof the given control dats can be considered, as well,
by the introduction of corresponding welghting factors. Inflnitely large
weight with respect to the given control data will eliminate the V  fram the
solution, thus distributing the unavoidable discrepancies among the plate co-
ordinate measurements only;.however, infinitely large weight assigned to the
plate coordinate measufeﬁents will make the given contrel data absorb all the
discrepancies present in connection with a certain ray under consideration. [ 3]
While:the boundary conditions that were Jjust mentioned are only of secondary
importance, the cholce of sultable weighting coefficients makes it possible
to prevent an undue deformation of the model cbtained photogrammetrically by
possible strain in the configuration of the given control data. In case the
original observationg (image point or control coordinates) are not independent
from each other, the corresponding correlations can be allowed for by intro-
ducing the corresponding correlation coefficients into the P matrix. In
case all the p-values are equal, it 1s convenient to consider P as the unit
matrix.

In setting up the corresponding normal equations, one has to teke into
account the fact-that in the most general case each observational equation
contains more than one measurement. Furthermore, in such a case, éertain
meaéurements and their residuals appear in more than one cbservetional
equation. - Helmert in [47, (pp 215-222), has shown a direct solution of the
genersl problem of a least squares adjustment. (Compare [2} , paragraph IV).
Accordingly, we obtain in our case a set of nqrmal equations as shown in
formulas (21):

| | APT'ATK -EA=-1Q
=Bl e =0 (1)

20
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where K denotes a vector of unknown Lagrange multipllers or correlates. A
direct solution would be obtained by the inversion of the system (21). That
1s, however, hardly practical because in addition to the unknown parameter
corrections, A's, we have for an m-ray problem 2m additional unknown k—valﬁes,
a fact which increaseszs the number of unkpdwn paremeters beyond the means of
practical computationa.

Next, a method which is commonly used in partitioning, a system of linear
equations shall be presented' which will be useful for our problem. Assuming a
system of linear equations:

Ax = 0 :

(22)
or consequently _i

x= A § .

(23)

Buch a system can be partlitlioned 1n any arbltrary manner leadlng to the follow-

ing sub-matrices and sub-vectors:
A|X| |+A|2)(2
Axxy | ¥+ Az xp

'y | -
0, (2k)

. : i
According to (23) we may write with the notation of (2k)

v = A"l 3 Yy . =0
A Ay A ASY

1Az X2  {e5)

and therefore

(26)
Trtmndriindnge (DAY $ntn +ha Tnwer nnntkdan AP +ha avatram (94Y wra ARt adne.
ddld WAL LI \GUJ AU WLIT LW TL HUJ. LALAVAL WL VT DYOLTUL \G"r, Wo Vi uUGhlll
-1 - -1 + _ .
Ag ATy Q) -Ag AV Apxp vAgxp = 0 (27)
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vhich may be written in a form analogous to (23) as:

‘e = Ap Np  wm  AZ Az =Ry KA (268)

-t
ba- Agy A 31

Ao

The computation of X, 1s then carried out with fonmula (26).

Because the sequence of the steps in the process of partitioning is in
no way restricted, 1t is possible to write as in (28) and (26)

X, = AT‘ A vith _ AT

-1 - .
Al ~AAg Ay (29)

N o= L -AphAy b

and’

- -
= Azl S2-Az Ay x | (30)

The method Just described obviously eliminates one-of the two groups of
unknowns as chosen by theiprocess of partitioning and solves for the other
group. If the method is used to pertition a system of normal equations at

- any point along its diasgonal, it follows from the symmetry of such a system

that AI2 B A2l + Further, it can be shown that in such a case the
matrix AZ in {28) a.nd correspondingly the matrix Al " in (29) are again
symmetrically arrenged square matrices. '

Because the matrix APTAT ' 1in formula (21) is non-singuler in
our prdblem, ve may apply the method of partitioning as Just described for the
purpose of eliminating the k-values from the priginal normal equation system,
The reduced normal equation system is, according to formula {(27),

[87(aP'AT)" B]aA - BT.(AP"_AT)"il o (31)
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The feasibility of this method of partitioning depends on the effort necessary
to invert the metrix. AP-’AT. Because thls matrix is even for the most
general case of our problem, a sequence of fully separated symmetricaelly
arranged (2 x 2) square sub-matrices, i1t 1s possible to accumulate the normal
equation system (31) stepwise, as explained in [2] page 22. Thus we obtain:

mr . e 1 m r .. w1
2 | BYLARP T ALY TB)A=2 |BHAPTATTY |

Z (32)

whereby m, the number of AP'AT  submatrices » equals the number of rays
present -in the specific problem. As already mentioned at the begihning 6f this
-paragraph, In case only the residua.lé of the plate measurements are present the
Aj matrices are unilt matrices and therefore the (AP~ AT Y! term in (31)
reduces to P . In such & case the system (31} resembles a system of normal
equations asgoclated with observational equations for independent indirect
measurerents. The final normal equation system in such a case can be accﬁmu-
lated stepwise according to formula (32) by considering in each computational
step a single cobservational equation. '

After the vector of the A corrections of the unknown paresmeters is

computed, we obtaln with the first group of equations in formula (21), the
K-values. |

k= (APTAT)! {BA- Q)
(33)
I}

end the residuals v and \./ by:

Vx
vy T (34)

V2i]lvx | =P A Kk

LY

vy

VzJ

The V-velues are then computed with formulas (16).

]
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From & study of formula (31) it becomes evident that the feasibility of
the propbsed solution depends on the possibility of inverting a more or less
large matrix of normal equations., In special apﬁlications of photogrammetry,
such as laboratory measurements, ballistic measurements, terrestriﬁl aﬁpli-
cations and, more recently, cadastral surveylng, using alrborne photography,
the single model still plays a dominant role, The total number of unknowns
in such cases may very well be within the limits which today can be reduced
by ilnverting the corresponding normal equation matrix. However, dependling on
the number of relative control points considered essential in order to satiafy.
the requirement for redumdant information and on the type of the electronic
computer avallable, there wlll arise in many photogrammetric applications.the
problem of treating numbers of unknown parameters exceeding the computqtional

- capaclty for reduction by direct Inversion. For such cases, 1t 1s desirable,
however, to maintain the advantages of the systematism and simplicity described
earlier in forming the observational equatlons and the corregponding normal
équa.tions. Consequently, the solution to our problem must concern itself with
methods for determining the roots of a normal equation system of the type shown
in formula (31).

B. A Solution by Partitioning

In order to-furfher reduce the number of unknowns 1n the‘ﬁormal egquation.
system obtained in formula (31), we split the B matrix and the A vector in ;
such a way that one group ls assoclated with the model and the other group with
the cameras orlentations. We denote the corresponding submatrices and subvectors
by ByxiBo. and Ay and Ag , respectively. With these notations we can ’
present the system of normel equations (31} as follows:

[Bx (AP~'ATY™ B,]ax +[B% (APT'ATY ' Bo| Ao = BX (APTATY'R (3

................................................ LR R R P R R T

[B] (aP~'A")" B, ] A, §+[|3£(m:>"AT )" Bo]ao = BY (AP7'ATY 'R

24

i



N o
o i3
- ,
=) o
Um0 m
eINTOSAY ~d|  CSSSSNNNSS 1 SNSRI T R A A A
nr
g ! | o
g
£
S
t —-- .
: \ \
AN §\\ \§
IOANEN
R o
: b\\ M &
23

.
NN NN

AN N

-—— . — -

: | o )

i il 7 S

rateee
petelels

Normal Equations According to Formula (35)

B'(APA)

A, |
<<

Point No,—= 1 2 .3 |,

T 4
25 LTy 0% ULS. aills
eeTY30 Bi AuCH )
Fo. UEC, T 21008
Sl - i

Figure 4



The normal equation system as shown in (35} is typical in its arrangement for
any phofogra.nmetr@c triangulation problem. The number of points recorded at
any one gtatlion and the nu tations involved in a specific measuring
program will obviously influence the overall size of this matrix system but

will not change its basic character. A study of the corresponding matrix

j B P P Ty PN

we have along the dlagonal, & sequence of fully .
separated symmetrically arranged square submatrices. The fact that the two
types of submatrices which appear vary in size is less significant than the
t group, UI (Ap~'aT ) By , the

spatial coordinates of only one specific object point (in a genera.l case up. to
3) are present, while in each submatrix of the second group Bo (AP—'AT )—l Bo,

-|-+mn( n oo

n
ic camera station {(in a Ecucl"u.l. casge

up to 9), appear. The BX (AF’-'l AT Y'B and the BO (AP—'AT )-
submatrices express the fact that a specific point was photographed from certaln

camera gtations.

L L=

Viewing our system of normal equations with respect to the method of
partitioning as described in this report with formulas (22) through (30), a
suitable point for partitioning is obviously that point on the diagonal, which
separates the parameters assoclated with the model, from the parameters con-
necte'd with the camera orientations, as indicated by the dotted lines in

U T A Sads TG et e e
OlLa (< ), WE INay wriuve:

- - - - -I -] -
{85 (aP™'aTY" By~ [Bg (aP"'AT )" B |[BY (AP'ATY ' B,| [BR(AF AT Bol}ag =
=1 =1 O | aAr = =] T=! _lr -} -rél'l‘l . (36)
{Bo (AP A" —[Bo (APAY "By ||Bx (AP 'A) By [BX(AP A1l
or, with reference to (32):
o T r
1§|(C°B°)EA° i ig:l (Col) (37)
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where

Coj=BJ {(AP" ATY! -[(Ap-l ATY! Bx][ By (AP™/AT)"! Bx]_' [B;(AP_'AT)-']L

and r = number of points of the model.

Trn awntr mhntnacrns
ddi CLLY  pUL uiJpg L Gl

coordinate corrections of the model or the corrections of the orlentation
parameters in the system of equations (31). Accordingly, we may write as in

formula {37)
L

n
(Cy By)jAyg= Eu (Cy L (38)

M>

i

where:

cag- 8 e o= [aprar a5 a5 ae-tarr]

and n = number of photogrammetric cameras.

In photogrammetric meaguring
unknown orlentation parameters will be less than the number of unknowm coordl-
neteg of the model; therefore the elimination of [&x as suggested with
formulas (57) will generally lead to the most economical solution. Block

triangulation with a high degree of sldelap mey be mentioned as an exceptlon.

With the vectqukokmown, the vectarZ}xnmy be computed for each

nadnt oaancomatalyr A i na_tramaa FPram +ha nrhmar nartdan AP Pavmalas [Z6)
PULllv SUPQlQUeLyy MU vaALU=sYOIoO, 1400 LUl WpPoD pUlLivil Wi aUlhnaGs yJijfe
Thus for example Ay is:
-1
A =laTiap-1aTyv1e. ] TaTiap-taTy1lt 0.0 A ) (39)
R vy ~ 1 UKJ Lux VoAar ] J\ A waLagd b

Bx=1°

a7



with Z}::[étg] "the k and the corresponding v and V values may be computed
with formulas (33), (34) and (16).

However, it appears to be more advisable to compute the coordinates of
model polnts with such computational steps, as outlined in Chapter IV, E. of
this report. Such an approach appears to be especially suited because the
corresponding computational means must be included in the solution anyway, in
order to provide the first approximation wvalues for the coordinates of the

model, which are necessary for starting the initial iteration cycle.

The setting up of the observational equations (15) or (19) requires
computing the coefficients of the matrix of the unknown parameter corrections
and of the residuals. All coefficients are obtained by partial differenti-
ation of the formulas (12). The linearization procedure is accomplished by
applying the Taylor series and neglecting second and higher order terms.
Therefore, an iterative procedure must be provided in the computation, whereby,
the results of each cycle are introduced as approximate values to the follow-
ing-cycle. The iteration is repeated until the solupion has converged to a

Ire-established accuracy level.

We now introduce the following computational auxilisries:

xO—xO
@ = —2
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The coefficients of the observationel equations (12) are now:
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oF

f:Ay:-@(@._@-@) |

aFJ'=B = 4+ | (1 + 2) sin x° - . cos «°

dw  Tx (41)

%sz:-co l:(l +®2) cos n‘°-®.®lsin xo)]
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The q, Ay, By, €5, Ay, By, Cyy D, E, F terms are computed with formulas (12},

(15) and the approximation values of the unknown parameters.

It should be mentioned that, for speclal cases where the orientations of
the various camera axes are such that the approximation values for the ro-
tational parameters can be assumed in all iteration cycles to be either 0,

g or multiples there-of, the differential quotients as given in (41) reduce
to well known simple expressions. However, this fact is hardly worth con-
sidering for a general solution because the savings in computing time are

imraterial if high speed electronic computers are used, -

Small and medium sized electronic computers will handle with this method,
photogrammetric measuring systems of two and three camera stations with an
unlimited number of recorded poipts. large computers are adequafe to solve
the corresponding problem for five and six camera stations. In other words,
the suggested method seems femsible to provide a practical analytical solution
for photogrammetric messuring problems encountered in terrestrial, labcratory
cadastrel and ballistic applications. The problems of strip and block tri-
angulation which need to be studied further are considered in a later chapter.

Ce, On the Use of Celestial Control Pointa:

The use of celestial targets (mostly fixed stars) 1s a traditional means
in geodesy and photogrammetry for establishing absolute orientation of certain
bundles of rays with respect to earth fixed coordinate systems. Terrestrial

Photogrammetry has used this method, especially for non-topographical appli-
‘catlions, This technique has lately become of interest agailn in connection
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wlith tracking of gulded mlssiles and satellites., In additlon, star photography
must be consldered an excellent means of calibrgting precislion photogrametric
cameras, because the method not only allows the determination of angular
parameters, but the determination of the elements of interior orientation,
including distortion coefficients; as well. (See chapter VI of this report).

Whatever the purpose, the héthod relies simply on the fact that each
celestial target point, known by its spherical coordinates, right ascension
(a) and declination (), provides an absclute control point situated at.
Infinity. Thus, a direction in space 1s fixed which 1s not sensitive to
changes 1n the position of the center of projectlon. Provided that the date
and time of exposure, together with the geodetlic ellipsoidal coordinates of
the center of projection (f and A) ere known, such & direction can be expressed
with well-known formulas by & set of azimuth and elevation angles, or as more’
often used; by so0 called standard coordinates £ and %, which are referred to a
tangent plane on the unit sphere, described around .the center of projection.
With proper corientation, thé £ and 1 coordinates in the notatlon of this re-
-port, are equal to (X), (Y) with (2) = +L. (Compare formulas (12))

The corresponding observational equations are formed exactly like those
for sbsolute control points, with the exception that each of the partial
differential coefficlents assoclated with the AX , AY , A Z parameter
corrections becomes zero, because of the celestiaz targ;t poigts belng at
" infinity.

It {5 practical to incorporate the Influence of astronomical refrection,
(see chapter VII of this report) in the computation of the standard coordi-
nates, so that for the corrected rays no further attention need be paid to the
refraction problem during the triangulstion camputations.

Obvibusly, the sun also 1s such a celestial target and comnsequently, the
aforementioned facts concerning the data reduction apply to it as well. The
use of the sun in aerial photogrammetry is important for strip and block
triangulation, and appears to be mandatory for satellite photogrammetry, as
well as for special attitude determinations of airborne photogrammetric
cameres. The significance of celestlal targets is not restricted to the fact

2
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that a direction is available which is not affected by accumulated errors.

At least equally importantis the fact that because of the infinity position
of celestial targets, the solution is able to discriminate between rotational
and translational parameters. If only terrestrial control points are used

these parameters are closely correlated. (Compare [5] e

Generally speaking, we can ssy that each recorded sun image gives rise %o
two observational equations in terms of the three rotational parameters (@, o,
k) of the corresponding stetion. Obviously, 1t is necessary that the
measured sun image plete coordinates, recorded with a special sun camera}-be
normalized in such a way that they are compatible with the metric character-
1stics of the merlal camers taking the corresponding ground photography.
Mathematically speaking,lit 1s necessary to normalize the corresponding
comparator measurements, by transforming the x,y,c system of the sun camera,
with three rotations and three translations, so that i1t conforms with the x,y,
c gystem of the aerial cemera. The corresponding rotational and translationel
parameters are obtained from preceding camera calibrations, for example by

taking star photography.
D. Taking into Consideration Additiondl Geometric Conditions

In order to complete & generally accepteble analyticael solution it 1s now .
necessary to study the problem of incorporating certain geometric conditions
such as may exist for one or all of the unknown parameters, including both the

coordinates of the model and the orlentation elements.

In the above outlined solution,. a system of normal equetions exists, at
least femporarily, in terms of hoth the elements of orlentation and the
coordinates of the model. The incorporation of any additional conditions
existing for any one or all of these unknown parameters, can be performed by
a computational technique which was presented by Helmert in [h] dealing in
Chapter IV, pafagraph 24 on page 196ff with the problem of indirect measure-
ments, the unknown parameters of which have to satisfy certain conditional

equations.
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Helmert shows in his direct solutlon, which seems suited for our problem,
that 1t 1s only necessary to add to the normal equetion system the corre-
sponding conditional equations and to restore the quadratic form of the equation
system by introducing for each added conditional equation an unknown auxiliary.
Assuming the observational equations '

vy = aqX + bly + ¢,z - 2

1 1
Vy = 85X + b2y +c,y2 - E2
v, Ta,Xx + b,y +c.2 - 2 (h2)
> 5 37 3 3
v, = gX +bhy + ey2 - ﬂu
and the conditional equations
G=p +DpX+0Dy
0 1 2 (h3)
o = qo + qlx + q52
We obtain from (42) the corresponding normsl equations:
[aé] x + [ab] ¥y + Emﬂ z - [aé] =0
[ab] x+ [bb] y+ [bd z- [vd =0 (hk)
[ac] x+ [ev] v+ [ec] z- [cg] =0

This system 1s being enlarged by adding the conditional equations (43), into
the following form:

el x+ [a] y+ [ac =z + P&y ok, - [ag] =0
eb] x+ [bd y+ [bd 2+ Dok, . - g =o0
ac] x+ [eb] y+ [ed z+ . + ok, - [ef] =0 (45)
Plx + pey ° o . + p0 =0
qlx . + qiz . .+ qo =0

The presence of zeros 1n some of the dlagonal terms must be taken into
consideration when the system (45) 1s being inverted.
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All the possible conditional equations which may exist between the
unknown parameters of our problem can be divided into two types. In the first

groun,. all condition
o= _—r7 -

ns shall be consldered which introduce additional metric

"

information, as for example, the helght of a point above a certain reference
surfaée, or the partial position of a point expressed by latitude-¢ and .
longitude ). or the glant distance between two relative control polnts of th
model or the differences in flying height between two successive aerial
photographs, etc. This type of conditlcnil equetlion which shall be designated
as a metric condition is especially important for the wide field of photo-
grammetric applications using ground control points,

e

?
Information, requires the lntroduction of & second type of conditional equation,
where the additional information is not metric in an absolute sense but

stricted to the mathematical character of the trajectory, This type of
conditional equation shall be deslgnated as trend % condlition.

(a) Metric Conditional Equation ‘
The mathematical form of a speclfic metric conditional equation 1s

Influenced by the type of metric information glven, end by the reference
+

measuring problem. From the multitude of possible given metric information,
the following selection can be assumed tc be of speclael interest for terrestiri-
al cootrol points.

absolute points given by: Latitude (4), longitude (2) and elevation
(E) with respect to an ellipsoid of revo-

b [P I R 4 e
Al LLOILy UL aaehb O

and b

P I
L

m

partial points given by: either latitude (@) and longitude (1), or
by elevation (H) 7 : :

relative polnts given by: +the slant distance between two relative

by

control points
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For computational convenience {see Chapter VII), it is assumed that a local

Cartesian system denoted by XYZ 1s oriented in such a way, that its XY plane
is tangent to the reference ellipsoid at the point of local origin, and its

+{ axis is polnting to the south.

The corresponding metric conditional equations are for:

(1) An sbsolute control point given by @, A, H: X = Fy (¢ » BH)
Y =F, (§ »E) (46)
Z=F (¢ )

The system (46) glves the results of & coordinate transformation presented in
[?j. No speclal metric conditional equations become necesgsary.
(2) A partial control point, given by ¢ and A:
(1) I¢X + II¢Y + III¢Z = A¢

(2) LX +ILY + IILZ = A (47)

conditional equations

(1) I¢AK + II¢AY + III‘DAZ

(2) IXAK + ILAY + IIIXAZ

where, in formulas (47) and (48):

It I
o O
~—

&
S

II¢ = 0 .
III¢ = cos [@) ten @ - sin [#] cos x with A% = A —[A]
sin [¢] tan @ + cos [4] cos A

A 4= X+ III¢

I, = ten A sin[f]

IT = -] o
TIT ; = tan A* cos [gjj ‘ ( )

A, == [x] ten 2*
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[x], [Y] = 0, [2] are the geocentric coordinates of the local origin given by
[¢] [k], [H] 0. The geocentric system is oriented so that its +X axis lies
ne of the local ori

in the meridian pla

+
*
Cartesian coordinates in the local system for the point given by $, A with H = 0.

It should be noted that all the coefficients can be computed during the
phase of coordinate transformation and consequently enter as constants into the

least squares solution of the actual photogrammetric triangulation computations.,
(3) A partiel control point, given by H:

Such a point is situateduon an ellipsoid of revolution, the axes of which
* *
are a = (a +H) andb = (b + H). In order to make the approximation values
XO YO ZO, as they may be obtained with (57), compatible with this condition, it

is suggested that first a new ZO value be computed with:

o _ J/ °\21 x° + Mgy
Z0 o=y x° g + TN 'l[l "} ]-( = )

The corresponding conditional equation is then

LA + ILAY + IILAZ = 0 o (51)

L)

\Ji
o

L

whereby:
IH =n9 +x0 o = Zons
Ir, = +¥° : (52)
IIL, = ng +°n; - x°q5
and N
1, = cos” [¢] + (i';g)e sin” [ §]
112 = s:Ln2 [¢] + (-E;;)e coa2 [¢]
Ny = [X] cos [#] + (i#)e [z] sint[ﬁ] (53)
Ny =~ 22
N1
ng = sia [#] cos [g] { §#)2 . l}
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g =:_i. q,? ‘.—_~ %]-_ ng =[X]sin[¢] -—[Z] cos [fﬁ] T}9=[X]sin[¢]'(%)2 [Z]cos[¢](53:

The n-values are constants and best computed during the preparatory coordinate

transformetion computations.

(4) In the case that the slent distance (4) between two relative control

points 1 and J is glven, we obtaln the corresponding metric conditional equation
with: _ 2 2 2] 1/2
a= [(Xi - XJ) + (¥, - YJ) + (2; - Zj) ]
end correspondingly: -
o 0 o 0 0,0 0 L0 o .0 0 L0
- - Fa - - - - - - - =

(xi XJ)AXi+(Yi Yj) Yi+(Zi zj)azi (xi XJ)AKJ(Yi Yj)axj (zi ZJ)AZJ Ad (54)
where:

Lgx9® + (1397 4 (20205 &°
Ad = J L3 1

The metric conditional equations (48), (51) and (S4) are linear equations in
terms of coordinate corrections and have the form of equations given with
formulas (43). Consequently, these conditionel equations can be used by »
simply adding the specific equations to the normal equation system as given In
formulas (35), which in turn have to be restored to a quadratic form according
to the system presented with formulas (45). The resulting system is solved by
direct inversion, or solved by the formulation of a system of reduced normal
eqpatioﬁs by partitioning as described In the previous paragraph. It is
obvious that during the process of partitioning end forming the finesl normal
equation system, the mlnimum size of any one subdivision_in.the computing
process 1s determined by the specific group of parameter corrections combined
by one or more conditional equations., In order to obtain a uniform approach

to the computlng program, it is possible to consider a1l polnts of the model

as relative polnts, introducing the absolutely glven control data as metric
conditional equations. Considering the given coordinates as approximate values,
the correspbnding condltional equations with respect to the the three spatial co
ordinates are A.XJ = 0, A.Yj =0 and A ZJ = 0. These conditional equations,

or any selection of them, are added to the corresponding BI (AP"AT)"'mea.trix
‘during the process of forming the reduced normal equation system (37). By so
doing the coordinate values introduced are enforced. If desired, the corre-

sponding V residuals cen be carried in the A -matrix as described before.
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If 6n the other hand, the conditional equations are rather simple
expressions as e.g. in formulas (47), (48) and (51), it is more practical
to use these equ&tions to eliminate certain unknowns in the corresponding
observatlonal equations. Thus, the coefflcients In the Bx matrix as given
with (41) have to be replaced by:

(L), =D IIry -B (IIL -LIII ) -F ) - :
* X x p X If for points of type 3 the unknowns
AY and AY are eliminated
L =D IiT, -E_(ITI -1, IIT -F
( )y ) ( . Il ¢) ¥
I
i T
and (J) =F == -D (K) - E
x X IIIH X , xIIIH X | 1f for points of type 4 the
o I, I, unknown A2 13 eliminated
J).=F =— -D K) =F —=-E
E)y y I 7y, Ky 'y LIy y )

In case the systematic errors present in the control data are rather large,
1t may be desirable to adjust them in such a way that dnly a specific residual
V is obtained for any given cbntrol coordinate, independent of the number of
rays Intersecting at such a point. Such a solution may be obtained by adding
to the normal equation system (21), corresponding conditional equations. In
general nomenclature, such a conditional equation 1s, with regard to formulas .
(15}, (16), (34) and (%0), ‘

- 55)
V=p l(a.kl + bk,) o (

Thus it is possible to establish for each of the independent combinations of
the Intersecting rays by palrs, a conditional equation between the two group
of associlated kl and k2 values, by equalizing the corresponding expresslons
(55) separately for each given control coordinate. In this way all normal
equations aésociated‘with a specifle polnt will become Interlocked in the
AP~ AT matrix and the process of stepwilise accumulation of the reduced
normal equation systeﬁ (32) or (37) will be rendered much more cumbersome.
Numerically speaking, in'such cases it appears simpler, and from the theo-
retical standpoint suffic1ent1y rigorous, to accompliéh the adjustment in

two separate steps. In the first step a least squares adjustment will bhe
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performed according to the presented solutioq,with the restrictlon however,
that only such absolute glven control data are Introduced as are necessary for
a unique solutlion. The coordinates of the model thus obtalned are then trans- '
formed in a second computational step by three translations, three rotations
and & scaling factor 1n such a way that the sum of the squares of the residual
distances between the model and all the glven control coordinates becomes a
minimum., Obviously, with such a method, the photogrammetrically obtained model

18 being interpolated into the configurations of the glven control coordinates.
(Compare [3] and [b] )

(b)  Trend Conditional Equations
Quite similar to the treatment of a metric conditional equation, it
i possible to introduce a certaln trend condition known to exlst between the
points to be trianguldted, and which 1s mathematlcally expressed by a functional
relation existing between the coordinates of such ﬁo;nts. In a general sense,
such conditlonal equations will resemble metric conditional equations, except
that they wlll not necessarily have any sbsclutely glven parameters. Depending
on the mathematicael character of & specific trend, the number of points involved
in such & trend condition will vary. Correspondingly, the smallest possible
subdivision in the process of establishing the final normal equation system by
partitioning will be determined by the number of points combined by any one or
geveral trend conditional equations. '
E. A Solution for Triengulating Points not Included in the Least Squares
Treatment for the Orlentation Parameters
7 Béspitg the possibility of incorporating any number of relative control
-points in the general analytical solution for a specific photogrammetric
triangulation problem, 1t scmetimes may be desirable to triangulate separately
additional points of the model. Consequently, for those polnts, an independent
coordinate determination becomes necessary. The positions of the corresponding
rays are determined by the elements of orlentation as obtalned from an inde.-
pendent preceding lemst sguares adjustment and the corresponding plate measure-
ments. It is obvious that these rays will not intersect due to unavoldable
measuring errors. They must be made to intersect so that the sum of the squares
of the corrections to be applied to the originsl plate measurements 1s a minimum.
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It appears advantageous to have an anglytical solution which 1s affected as-
little as possible by the number .of rays involved in a specific triangulation
case, and which in addition uses formulas already in use in the computatibnal
procedures previously deseribed. Obviously, such a solution is already available
with the observational equations (15) if only the coordinate corrections A XJ,
A YJ and A Zj are considered as unknowns. These observational equations lead
directly to the corresponding normal equation system formed according to
formulas {35) by introducing {AP'AT)™! as P and Bo as a null matrix. The
necessary‘coeffiqients of the observaticnal equations denoted by J#, J&, Kx,

Ky and L_ and Ly are given in formuwlas (41).

This approach makes 1t necessary to compute, as a first step approximaticn,
values for the coordinates of the point under consideration. This may be done
efficiently with the use of the formulas (11), which may be written as:

X +aZ +p =0 ‘
(56)

Y +a 2l + =0
. y BY
where : :
| (x'xp)Al + (y-;,rp)A2 + ¢cD o
a = - = - =
X Q W
o = - (x-xp)Bl + (y_yp)BE *+ cE _ Y
N Q w
By = - (O&ZO ¥ xo)
By =- (a:yzo + Y )
The corresponding normal equation system for an n-ray solution is: :
Y Z
z 0 ] +[R]=0
n +la + =0 .
2 +lo] v (8] (s7)

+[ox] + [aB]=0
It should be polnted out that the roots obtained from formula (57) must not

be considered as the result of a rigorous least squares solution because there

is no indication how nearly this approach minimizes the sum of the squares of
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the corrections of the original plate measurements. Without doubt the answer
wlll provide an excellent epproximation value. . As a matter of fact, such an
answer may be considered as adequate in itself,‘if there is evidence of the _'
presence of systematic errore, a situation which renders an additional '
treatment by a rigorous least 'squares solution superfluous. Furthermore the
method presented with the formulas (56) and (57) is well suited for computing
in each iteration cycle of the least squares solution as described in Chapter
IV, the coordinates of the points of the model. (COmpere remark Chapter IV (B),
page no. (28).

F. The Determination of the Meen Errors of an (bservation of Unit Weight
of the Elements of the Orientation and of the Triangulation Results

The mean error of an cobservation of unlt weight denoted by m 1s computed

with | " -
TPv.1/2

- (Pvy1/ (58)

The term V' PV , may be obtained directly from the reduction of the normal
equations or by adding the squares of the individual. weighted v and V values.
The letter r, denotes the number of observational equations and u denotes the
number of unknown parsmeters. Thus the mean error of a specific obgervation £
before adjustment is: . | '

m
m, = —————
2 /Ei;

The computation of m directly from the original measurements, e.g. using the

—

\

\O
N

differences of multiple observations; may lead to a value of greater physical
slgnificance. The discrepancies between the different values of m, computed
with different methods provide means to investigate the presence of systematic

errors.

The mean errors of the unknown parameters in a least squares solution are
obtained by multiplylng m with the corresponding weighting factors. The ‘
inverse of the-matrix of the coefficients of the finasl normal equation system,
is the matrix of the weighting coefficients. The diagonal elements are the
squares of the welghting factors assoclated with the corresponding unknown

parameters.
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If the normal equation system as gliven with formula (31) i1s directly
inverted, the computation of the corresponding mean errors for both the orien-
tation elements and the coordinstes of the model does not cause any difficulty.
Correspondingly, the mean errors of the unknown parameters associated with the
reduced normal equation system in the method of partitioning (xa, in formula'
(28) or x, in formula (29), respectively) are directly obtained using the
diagonal terms of the inverse of the corresponding normal equatlon matrix, To
prove this, we write the matrix of the coefficlents of the normal equation

system (35) with a notatlon corresponding to formula (24%) as:

Au | Ap _
aT Fy {60)
Rig | Az

(61)

According to the definition of the process of invérsiog)'with'reapect to the
notation used in formulas (60) and (61) follows:

Ay Ap | QII_.Ql2

- [o3]
A, Az Q2 Q| O I (€2)
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In accordance with the definition of the matrix product, it follows from (62):

;
@) Ay @y + AQp=1
(@ A Q2+ Aj2Qz2= 0
(63)
T T
(3) A2 Qy + A22Q;2=0
L
() AizQz + Ay Q5,1
With (63) we obtain:
e
Q2 ="A, A2Qz2.
or T
A2 Q2 * A,2 Au A|2°22
+ AgpQpp= t+ Az Q) (64)
T . T o1 .
A2 Q2+ A2pQ2p =(63)4 = T:=(Ay-ApA, Ajp) Qg
or

T -t -
Qaz° ( Aga— A A} Ajpd)

' -
Formula (64) is identical with the corresponding expression A*a in formula
(28), which had to be proven.

In order to compute the mean errors of those parameter correctlions, which
are eliminated‘during the process of forming reduced normasl equations, ac-

cording to formu.las (37) or (38), the matrices Qjor 022, respectively, must

Ton Ao d e D T AT T rarm e Bl e FOZN oo P N ) I e
Ne LDUELILIC . L LOLIOWE LU Luliulabs \QJ), CKLLLH.L;J.UIH (€5 alld \< LIlE L
-l " T A-l (65)
E
Qu=Ay+ Ay Ap QAR Ay

k3



O A AT A A AT (65
and correspondingly from the equat}oné,(B) and (&)

~ oA T . L= )
M2z T A2z YAz Ap QA Age (66)

The computation of the mﬁtfices Q,l or szcan not be performpd by stepwilse
accumilatieon and therefore & considersble computing effort becames necessary.
On the other hand, the relative accﬂracies wlthin a model are often of pro-
nounced. interest. This fact underlines the advantages of a solution which 1s
established elther directly on formula (32) or on the reduced normal equation
system (38), provided that the corresponding computations can be handled by
electroni¢ computers. If 1t suffices to obtain only the mean errors of the
eliminated parameter correctlons, it is possible to compute the squares of the
corresponding weighting coefficients as the diagonal terms in (65) or (66) by -
a atepwlse accumuletion in the same way as the reduced normal equation system
was stepﬁ}se gcéﬁmulfted. . b _ I

ih,case the elements of orientation can be assumed as flawless, the corre-
sponding Q?znmtfix.begomeé e null matrix.aﬁd the-A]: matrix emerges as the
. welght matrix of the triangulated points: The more excess observations:in-
;cdrporated into the original least squares solution for the orientation
-parameters, the better this approximation solutlon will be.

G. An Exampleiof the Described Solution Using Functional Schematics

Figure 5 shows the overlap of 3 photographs which may. be considered as
being taken elther by aerial or ground esteblished cameras, -The different
types of control points are marked by the following symbols: '

bt absolute,cqhtrol,pbinf; given by,x, Y, Z
.® : partial control point, given by X and Y
®: partial control polnt, given by Z

®: relative point o ~

bk



The heavily drawn contour line surréunds the area over which a model exists,

Figure 5
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The following tebulation shows the situation 1nterpreted in terms of the re-
cording of the various polnts (Nos. 1-9) by the various camera stations (Nos.

Point Type of Point Camera Stations at vhich the point was recorded -
Nos. ' : I II : . III
1 A X - b4
2 O X - X
3 ©® X X %
L @ - X X
> @) - X -
6 O X x

T A - X
8 L) x X -
g A - x

Counting the cross marks, we see that 19 individual rays are preéent.- Each
ray leading to 2 equa.tioﬁs ) ve ha.v_é » 19 x ‘2 = 38 observation equations for the
33 unknowne which (a.ssuming for example, the three elements of interior orien-
tation of each camera orientation as known) are composed of 3 x 6 = 18 elements
of orientation and {9 x 3) =12 = 15 coordinates of the model. As an inter-
esting bv-—product. 1t may be mentioned, that the e\ra.lua.tion of the chosen
problem,,a.lthough slighj;ly overdetemined would not be possible with con-
ventionsel restitution equipment and techniqﬁeé','because there are only a
maximum of 4 intersections between corresponding rays of any one pair of photb-
graphs ,-a.s‘ can be seen from the above tabulation.

. With the help of this tabulation we form thev correaponding 38 obaservation..,

rhamatd,rallv An {o A T'n ™ o Ao
A LN 4 i N -~

gl aauations u'h-lr-'h grea gho g. 6. Fig. &

equations vwhich ghown s
represents an observational equation formed according to formula,s. (18) with the
terms given in formulas (15), (40) and (41). The individual A matrices and
simllarly the corresponding P -matricee actually are a sequence of compietely
Beparafed sub-matrices., An inspection of Fig. 6 Bhows the fact, which has
already been mentioned, 'bha.t in case there are no V'B, the A matrices become

a aequence of unit matricea.
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The actual character of a specific control point with respect to 1ts
absclute, partial or relative value 1s of no concern in setting up the corre-
sponding observetional equations; In case any control cocordinates are gilven,
it is only necesgsary to eliminate the corresponding parameter corrections in
the Bx-matrix. Therefore, nc coordinate corrections appear for the absolute
control points Nos. l; T and 9, the partial control polnt 3 appears only with
one, and the partial control point 8 with only two coordinate corrections.

The system of corresponding normal equetions formed according to formula

(31) is presented in Figure T.
V. A REFERENCE FOR AN AUXILIARY
COORDINATE TRANSFORMATION

The subJect of a speciflic coordinate transformation is not neceasaril&
connected with the subject of this report. However, the application of photo-'
grametry, especially for geodetic purposes, unavoldsbly confronts the user‘
with the problem of converting geodetic ellipsoidal coordinates (lLatitude ¢,
longlitude A, and elevation H, as referred to an ellipsoid of revolution) into
a system of arbitrarily oriented Cartesian coordinates and vice versa.

A solution for this prdblem is given in [7] under the title "Some Remarks
on the Problem of Transforming Geodetic Ellipsoidal Coordinates into Cartesian
Coordinates with the Help of the Reduced latitude". Obviously, such a solution
includes the establishment of a geocentric Cartesian systen, which is but a

gpeclal case of the general codrdinate transformation problem.
VI, DETERMINATION.OF RADIAL DISTCRTION

Distortion A 1s positive if the image point is displaced away from the
ﬁrincipal point. ‘

- Figure 9



From Fig. 8:

' 1/2
2 2
d = |:(xr - xp) + (v, - yp)J (67)
Assuming that the distortion A can be expressed by
N e ke dd 5 7 | |
o= oq + Kld + Ked + KBd + seves (68)
and ‘
ax =2 (x, - xp) = (kK + Kide + -.2:1]* + ‘3@.6. e Mz - --P}
a
(69)
A 2 Y 6 '
&y =3 (Yr - YP) = (Ko +Kld + K d +K5d + .....)(yr - yP)

Due to the character of lens distortion » 1t is immaterial 1f d 1s interpreted
as the Tadial distance with or without distortion.

From Fig. 9:

A-A_a , " (70)

Ae c :
or

Al = A - EE da

C
Substituting formula (68) in (70)
3 5 7 ' '

T _ 1 .

A fKOd.+K1d + K,d +K5d E | , {(71)
whereby

K! = K _éc_

O o} C

K! is zero if the condition 1is introduced that
(=)

K =
o]

olB

(72)

50



Therefore, assuming that in the orlentation calibration the principal distence
"¢ 1s considered as unknown, that is to say that the solution is nof deprived
of the possibility of computing a Ac-correction in each iteration, we may
present the remaining distortion by:

. 5 T+ oius - (73)
At= K47 + K 07 + Kad. | |
and correspondingly with formulas (69) and (73) and Fig. 8:
xg =k, + (G d vk e L - X)) ()
2 6
‘yR = yr + (}L_Ld + Kedll' + K5d. + o--)(yr = YP)
*R =ty
From formulas (12) and with _ | (715)
- Yg = i +v - _
| | | y ¥
and formulas (74) the observation equations are:
T 2 "
£x_+ vx'=‘§E (1 + Kld -+ Ked'l+ + K5d§ + .,.)+ xp = F1
, \ . (76)
Tn N = . )
zy tv, =g (1L + K& +K,d f K5d + oeee )t Yp = Fy
where .
a=23 (m? + n? 1/2
T a
m = (X)Al + (Y)Bl + (z)cl
n = (XA, + (1)B, + (2)C,

Considéring K{» K, and K3 as a sufficient number of distortion parameters
we cobtain from the Taylor expansion for the right-hand side of the above .
equation sccording to formilas (15), neglecting terms of second end higher order,
Y BT e Ty AN e A TGN Y 3 Y5 T M
B oF oF oF, OF
V. +b Vo + .00 = 2 A + ..., + 2'AK + 2 MK, + 2 - A
y PNt T ARSI AR

-
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Because the unknowns Kl’ Ké, and K3 are linear in the observationa.],i
equatlions (76), thelr approximations in each lteration may he téken equal to
zero; consequently the coefficlents of the remaining unknown orientation

parameters remalin the same as glven by formula (%1).

The incorporatlon of the distortipn determination requires merely the _
addition of the partial differentials with respect to the unknowns Ki, Ké and

"y

K3 to the system of observational equations.

They are, for the x-equation:

N
5 S.2 cm 2 o 0
for K+ M =4 . ol a . (Ex - xp)
Ky : N_ = at,oam_ gt (£° - x°)
X o q X b
: 6 cm 6 ) o
H =4 , —=d £ -
KB Ox , q ( X xP)
. and for.the y-equation: ' - (78)
2 cn 2,0 o f
fo Kiy: M =4 , — =4d £ -
r 1 N =4 T ( ¥ YP)
. ..
4 cn b , o o
N =4 . —==4da £ -
iy g =& (& o)
Ky : 0, =, 8.8 (4°- 40
3 Y a Y 'p
where . .
2 Q 0,2 o] 0y _ 2 2 _ ’ '
a~ = (gx - xp) +‘(Ey P) = Cy +C, = ng (for the meaning of cy and C_

_ see formulas (L40) and (41))
Consequently we obtain: ‘

= . C -M = . C
% "% - G vy "% %

- 2 _ 2 ' ,
Ny =Gy - Cy W= G- Oy | | (79)
0 - 03 . C -0 = 03 . C
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The léast squares solution gives, besides the orientatlion unknowns, the
distortion\qqﬁrficients Kl, KE and K}‘ The disﬁortion A' can now be computed
with formula (73). However, usually the distortion curve is presented In such -
a way that A = 0, for a suitably chosen d. Thus analogous to formula (71), the
condlition that

K:ﬁ = -(1{151‘5 + Kp{1'5 + 1{337) (80)

must be satisfied.

From (73) the right side of formula (80) equals -Aé

Al
* _ ﬁ . N, /\JJ- /6
Ky = - —G*L_ = -(Kld + K a7+ K3d ) (81)
and the final distortlion curve 1s now
X 3 5 T
A= Kod + Kld + KEd + Kjd
(82)
* 2. L 6
or. , A=4d [K0+Kld +I(2d +K5d_

The "focal length" assoclated with this distortion curve is again, in analogous
. fera )
Lo \[1l1),

*

¢ =cll- K) _ (83)

Accuracy Conslderations:

The mean error of an cbservation of unit weight denoted by m 1s computed
according to (58)

n = (P Y1/2 (84)

\ F-Uu-=K/
vhere r 1s the number of observation equations

u 1s the number of unknown geometrical parameters and

P(is the number of unknown dlstortlion parsmeters carried in the solution.

As described in Chapter IV E, the inverse of the normal equation matrix
is the welght matrix of the unknown parameters of the solution and consequently

the mean errors of the dilstortion parameters can be computed directly.
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.The mean errors of a computed distortion A for an arbitrarily chosen &

remains to be computed. . ‘ .
e s \/Q/_\. (85).,‘
Substituting {8L) into (82) we obtain
_ 2 42 b ook 6 AGJ
A—d&&@ -a)+%w.—d)+Kﬁd-d)

which may be written as

A= de K) + £, + £ ij (86)
denoting
“fl“ £, = d(d2 - &)
f:: f2 ! whereby .f2 = d(d ﬁh)
L?3J ‘fj = d(d6 - 36)
we may write (85) as
X [P r"
=n [P : (87)

where ()K is the sub-matrix of the inverse of the original normal equation

system assoclated with the unknown distortion parameters Kl, K2 and K3.‘

VII. CONSIDERATION OF REFRACTION
Similar to distortion, refraction causes the tangent to the actual 1ight-
ray, at the center of prolectlon, to deviate from a line expressing the con-

dition of co-linearity between obJect point, center of projection and image
point. . '

In order to compensate for refraction, 1t is necessary to incorporate a

corresponding correction in the computation of the x° and'yo values 1n formulas

{119Y and 18Y  »a
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¥
s

that the local Cartesian system is oriented in such a way that the {X) (Y}
plane is normal to the plumb line direction 'at the center of projection and
further assuming that refraction acts only on the elevation angle.

C;;%angent to light curve

+(Z) :
, %

~

3

_curve of light ray

4

”/R (X¥Z)

(2),

+{¥)

Figure 10
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We obtain from Fig. (10):

. (Z2) -
etn z =

~ g V2 + ()P

A denotes the correction to the Zenith angle due to refraction.

-
'

——
o —

A= F(xo Y, Zgs 852, M) (89)

M gne‘meteorological'parameters and

i
i

S s = (@2 + (02 + 2] M

Consequently, we obtaln:

i
_—
La]
~—
—
|.<
—
o -

L
£
N
r]

o

B

—
]

]

g

~—

(),

0 0
Mhea 1hat+d R a o 1
108 CoOmpuUTation oI X ana y wiud

(90)

----- £ e

ow carried out, using for
each individusl ray, the corresponding (X), (Y) ( ) coordinates. As the,
(x)(Y)(Z) values converge during the iteration cycles to the final answer, 80
will the corresponding A correction converge to the correct refraction value.

i+
o3

a)
!

f"‘\

Fig. 1l shows the‘general character of the refraction values as they must .
" be ex eted by en observer on the ground (dotted lines) and in the air (solid

Refraction in peconds of arc ls presented iIn its functional.relation.to
the elevatlon or depression angle of the line of slght and to the height gbove

the reference ellipsoid of target polnt or observer, respectively.
b

LvThe tables No. 1 andANb. 2 show the same information in somewhat more
~.detail, The columns headed by A/lo show the changes of refraction for 1° change
" of a specific elevation or depression angle, respectively.

'It appears practical to assume that for eerial precision measurements the
210mm - 60 lens cone under 20 tilt presents the most stringent requirements
with regerd to refraction. Therefore 35 for a minimum depression angle appears
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t0 be a practical limit. Table No. 2 shows that for an aerial'obsefver both

the absolute amount of refraction and its differential change have their maximum
values for a flying height of about 18 km. For a depression angle-of,35° the
corresponding velues are 27" and 1", respectively. Based on practical.éxperi-
ence with metric aerial photography, one should be satisfled with a compu- .
tational accuracy of +1" for the refraction correction. Consequently, the
corresponding depression angles for the individual rays can be computed‘by

simple formulas depending on & local Cartesian coordinate system, prdvided that -
its origin is within ilo = ~~+100 km from the camera position. This approach
will do Justlice to strips of 200 km length or blocks with sides of about 150 km,

partial control polnts. A corresponding orientation of the local Cartesian

system has been described in Chapter IV - (D), page 35.

Formulas describing refraction corrections have been derived by several
authors, In [8] a treatment is given for astronomical refraction including
zenith distances » 90°. 1In [9] expressions for target points inside the

atmosphere have been derived. Referenceg with respect to corresponding basic , '
agsumptions and formulas may be found in the recently published report, [id] .

A summary of the problem of refraction in photogrammetry is found in [li] o i : i

M, the meteorclogical constants referred to in formula (89) are either
obtained in accdrdance with some model of the atmosphere or are determined
directly from independent meteorological measurements, or obtained indirectly
by additlonal elevation angle messurements with respect to known points; a
procedure which under certaln conditions can be hade a part of the actual
Photogrammetric triangulation measurements. If aerial analytical triangulation
demands specific meteorological parameters in the area of the flight, it is
feasible to eject periodically from the alrplane probes for measuring densities
and/or temperatures; the corresponding results being recorded by radio link in

Y -

the airplane.

-
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FIGURE 12

FIGURE (13)

61



In accordance with the conventional approach we derive from Fig. (13)

and Snell's law:

*
sin (z n
(),

. p n = index of refraction (91)
- *
3in n
¢ P
and from the sine law:
*
sin (Z)p _ rp where rp =R + HP (Fig.. 12) (92)
sin ¢ r
P

with (91) and (92) it follows that:

v sin (2) in (z) o
1:1p Ty sin zp-np:r‘_P s:.n. zp-K ~,‘(95)

in particular for point A, K = n.r sin (z)& where r_ = R + H_

Further from Figure (13), omitting subscripts,

r
o
£ A
ac = K d&r , and, C_ = K —dr (94)
r I:(nr)2 - K2:| 1/2 r, T V(nr)2 'S

Applylng formula (94) to points (Q) outside of the effective atmosphere, where
n = unity, we obtain with rq =R + Hc1

r
. - KS BN} (95)
r

and, correspondingly, from Fig. (12) for all points for which Ty > Ty
1K

X (96)
q

CCl = (z)a +Aoo - sin

~)

)



BRANCH EQ. 1

From {96) 1t follows that, for target points situated outside the effective
atmosphere, refraction can be expressed in terms of astronomical refraction
denoted by A . According to [8] we have

N - 3 * 5 % ‘7 * : i
D= tanz ‘+a, tan” 7z + G ten” z +q) ten' z + .., (97)

S ] 213
with etn 2z = v_ ctn (z)a and for air v_ = 8.1578 T

The coefficients o, ...0 depend upon the structure of the atmosphere. As

outlined in [i;] for preclsion work it wlll be necessary to compute o, with the

- Cauchy equation as function of the effective wave length and obtain an index of

refraction profile from Rawinsonde observations. It is then possible with
formula (9%) to determine for various (z) values the corresponding Crvalues by.
numerical integration. The corresponding £L¢x)values, computed from the re-
lation C = (z) + A oo (Fig. 12) are now used to compute the specific a-
coeffleients by fitting the expansion as given by (97) to the computed Zloo

values.

In order to apply formulas (94) or (96) to the case of an aerial observer,
1t 18 necessary to establish the relation b
obtained from (93).

etween (z)P and (z)a which 1g

nr sin (z
K _.BP ’ ( )P
nr nr
a a - a a

(98)

sin (z)a =

-

The true zenlth distances Z, and z_ &re computed, according to Fig. 12 from

£

sin Cp )

tan z_ = - (99)

a

cos ¢ = P

P P

and

. . -sin CP ‘
‘ tan 2y = = . (100)

’ cos € - &

r
a
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From Fig. 12 we see that for all points outslde the effective atmosphere,
the refraction as encountered by an observer on the ground and in the alr for -

a specific ray add up to astronomical refraction.

This fact 1s illustrated in Fig. 11 where, as example, for an elevation
end depression angle of 500; the sumg of the ordinates of the solid and dotted
1ines have been plotted for altiltudes outside of the effective atmosphere. The
resulting line, designated ' astronomical refraction for 30° ", agrees with the

‘corresponding value of 99" in Table No. 1 for ¢ = 3%0° and H' = .

: - '
For-precision triangulation of points within the atmosphere, especilally ir

~

L -~ large distances between observer and target are encountered as in guided missile

=
applications, the numerical integration by formula (94) based on an index of

~s

refraction profile will be unevoidablé. For many cases, however, especially in
aerial photogrammetry, an expression for the refraction can be used which avolds

the cumbersome numerical integration.
§
Assuming e constant atmospheric temperature gradient, refraction ex-

2

pressions were derived.irlf9] for both an observer on the ground and in the air.
L However, thege formules are restricted to a situation where one of the end
- points of the light curvesls situated at the helght of the ellipsold of refer- .
ence. ”MOreover, the expressions obtalned in[_9] are. unnecessarily complicated
for numerical evaluation. In the following a derivation is given which follow-
'ing the general approach of [9] s Overcomes the above mentioned restriction and

L

results in expressions more suited for numerical evaluation.™

\.

, .From the well known pressure altitude relationship it follows that for &
linear decrease of temperature with altitude,
1 = T—- & =L}-— = - :
B (TO) where a.'= <~ == and T T, + IH (101)

2

. ’ . B 2
~ R 1s the gas constant for air, T absolute temperature

+ T and L = fg% the temperature‘gradiEnt. - B
-Simllerly well-known is the density - altitude - pressure relationship.‘ )
T . 3 T g el
P p, T T

H



Finally we introduce the well known relationship between the indexes of
refraction and density (compare e.g. l_:_lazl ). ‘n'z = 1 = cp, where ¢ 1is a constant.,-

© With n-= 1 + @, where g 1s usually <0.0003, we may write:

n-1 ] - T ,a=-1 :
== =B orn=1+a(z) (103)
Dol % A, °%
S8 (2)
5 ~
AN, =01 & (T)
i . = |F : 8
= ]
Pt
(2)y 778 h (1)
“
[
A X " (Ta)
B, (7,)
Figurs 1k
cnep Ta_t (104)
Hp i Ha‘ " B L "L . i
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From Fig. 14 : x = (h +Ah) tan (z), (105)

. Ah sin (Z)a Ah sin (z)a cos (Z)a ' (1065 |

and Aa— 5 . 4 h

In [13] an expression for x is published,’ which may be written as:

o tan (Z)a Hp n -n '
x = h tan (Z).a + ;—;;2-—(;-5- f —-TLd.H (107)
a H '
. a

For optical frequencies nP 1s usually < 1.0003 but>1 and we may therefore
write for (107) | '
H

h tan (z) e W P ( )aH (a8
x = an Z + ——————— n - n 10
8 cose(z)a f & L . ‘

By comparing (105} with (108) it follows from (106):

tan (z) Hp
A, =it f (ng - n) a8 (109)
a1 _
a

-Due to the linear relationship between temperature and height, (101), we may -

write with the notation in Figure 1% and formula (104) :

‘ T
P

¢ : tan (Z)B‘ ' J
'Aa e - j‘ (n, - np) ar . (110)
.

a

g
From (103):

T
a, a1
na =1 + ao(-T-;)

T . .
. “py a1
np mlralE) T |

.é-l . a=1
o T SN
0 a-1 _a-1 0 a : e
(g = n) = 2 @G- = o[-0+ T) ]
‘ 0 TO

)

1)
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Substituting (111) into (110) we have:

tan (), @ 1 ([ 7
an (2 a
A = a 0 & _ t \a-1
a T o1 1-Q+ Ta) at (112)
° ()
a-1
ten (z). « T T T
_ a "0 a a t \a a
Aa = T Ta‘l t - ? (l + T—) + a— (ll})
o a
% a-l : } T;
sza T a-1 tan (Z)a Ta ~—— (114)
T a(T -T ) _
o a p
or a a
L] E-"l Ta - Tp .
q = A ten (z) T, - (115)
a(T -7 )}
a p
where
.OB
A 1 ° T, = T, + LH_
“To
a = L T =T +1H
RL p o P
From Figure 12 or 14 we have:
T ‘=/_\.a o (116)

where T 1s angular refraction, andJAb is the refraction of an aerial observer.

From 9% follows:

n, r_sin (z)_
& _ D &
n r_sin (z) (117)
p & p
T
with (116), setting -;3 A 1, end with T being a small angle,
a
we may write (117) as:
‘n&
— =1+ 1 ctn (z)_ (118)
Llp N @ \ /
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Neglecting again nP in the denominator, we have:

(n, - n)) = 7 cta (2), (119)

hd

or with (111),

a
T = — tan (z) (Ia-l - Ea-l) (120)
s VEia Vg P
o

and with the notetion of formula (115),

o a-1 _ a-1
™ = A tan (z)a (Ta TP ) (121)
The refraction for en serial observer follows, from (116):
T - T el
A; = Aten (2), | =—F -1 (122)

- p
a.(TEL TP)

'

As mentioned on page 64, 7 becomes astronomical refrection (A,) for all points
outside the effective atmosphere for which TP = 0. Consequently (121) reduces
for T = 0 to:

P

1

' . -
A" = A tan (z)a T, (123)
Introducing (123). into (115) we obtain:
. Tz _ Ta
A =AY - A ten (z) =B (124)
a a
a{T_-T )
a'p
' T: - T:
K (125)
& = a1 (T -7 ) |
a ap

whereby for precision work A’  can be computed from (97).

Refraction can now be taken .into consideration by computing either A or
(z - A) as required in formula (90).

6o

x)
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o Location of observer or target polnt respectively.
Type of application Outside effective atmosphere | Inside effective atmosphere
Aerisl Photogrammetry | Formulas (100), (96)

(97) and (93)

Formula (122)

Terrestrial Formulas (99), (96), Formula (115) or (124)
Fhotogrammetry (97) and (93) and (97) or {99) & (94)

in order of increasing

precision

Attention must be given to the fact that the computation of 2z for a specific
ray is carried out with the coordinates of the center of projection and of a
specific control point. Thus z, and not (z), is being obtained (Fig. 12). In
extreme cases of precision terrestrial photogrammetry, it may therefore become

necessary to compute a series of refraction corrections according to the follow-

ing steps:
1. A'=fz
2. {(z)'=z - A
3. A" = £(z)! ete.

The computations are continued until the specific[k-value stabllizes.

Provided (z)a + (z)P 15 sufficiently close to 180° (flat earth geometry),
formulas (115) and (122) can be combined in an expression valid for both a
ground based or airborne camera. Introducing the notation of this report, the

center of projection by O and the target polnt by R, we obtain:

a-1 Tg - T;

A" = A tan (z). [T - —— 2 (126)
o 1° a(T.-T.)
O R
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VIII. THE TREATMENT OF STRIP AND BLOCK TRIANGULATTION

It has been shown that the matrix of normel equations (35), 1llustrated in

Fig. 15, expresses the general photogrammetric problem. The contents of that
matrix include the solution for the triangulation of an unlimited block and
obviously, as a speclal case, the triangulation of an unlimited strip.

Such matrices resemble each other in the geometric arrangement becéuse
successive groups of ground polnts are beilng photographed from a certaln number
of successive ceamera stations., This fact 1s reflected in the arrangement of -

the coefficients in the BI(,AP"AT)" Bo metrix apd its transpose. These
- matrices are only ﬁartially filled, forming an escalator pattern as shown in
Fig. 15.

The example is a strip with 2/3 overlap, where 1t is assumed that six
points are located in each trilap-area on the 'ground (I, II .....N). The
corresponding reduced normal equation system (37) itself becomes a symmetrical

escalator matrix, grouped along the main dlagonal as shown in Fig. 16.

Fig. 17 shows a reduced normal equatidn matrix for the determination of
the corresponding AK vectors of a block of 7 x T photographs flown with 2/3
longitudinal and 2/3 lateral overlap. In this way, each portion of the ground
is being recorded on nine photographs. In the example it wﬁs assumed that one
point is located in each cne of the nine times covered gfound sections., The
matrix as shown in Fig. 17 is typical in 1té arrangement for any block tri-
angulation.

The. size of the cross shaped openings which are filled with zeros obvi-
ouély increases with an increase in the length of the .sides of the block under

' consideration.

If one uses the aforementioned schematic of the general solution, present
day electronic computers alloﬁ, without undue difficulties, the formation of
the reduced normal equation systems as presented in Figs. 16 and 17. However,
~ the problem rgmains to invert these normal equation systems. Generally
speaking, both strip and block triengulation will result in normel equation
systems with too many unknowns for direct inversion.

T0
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Two possibilities for the solution of this problem shall be discussed.

The first solution is rigorous. Its result is influenced only by the
rropagation of the rounding errors in the computing machine.

The solution depends on the repeated application of formulas (22) - (30),
thﬁs eliminating, stepwise, certain groups of unknowns.‘ The system of pér4
titioning as displayed in Fig. 16, is besed on the stei:wise elimination of
groups coptaining twelve unknowns. This arrangement was chosen in order to
minimize the number of zeros in the individual submatrices, denoted by B 's,
thus increasing the economy of the necessary computations. Denoting the
s-times reduced system of normal equations in accordance with the well known.

notation used by Gauss, as .s,

we obtain: AO [As (S-I)] =[,f"s,-(‘:‘;-l)]

_ on T[As -{s- 2)] [&_,'(8-2)—85_, Aos],

;So, - &/ [h-88,)

(127)
where
Ayl = A,-BiA'B ond b1 =8 B'_A.,_P.
As3-2 = Ay~ By (A1) B, boe=f-Bya "0

Ag-(s-1) =A -8Bl [Ag, (5-2) "B, fts-0)=L-BL, [Ag. (s-2 4 ds-2)

T4
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The other solution uses a technique related to the Gauss-Seidel relaxation
method. A submatrix chosen for geometrical reasons, .nmves in steps across the
original matrix. Once more the escalator matrix of Fig. 16 is seen in Fig. 18
a8 the sheded erea within the heavy contour lines. In a strip flown with 2/3
_ oferlap, five consecutive camera stations are conmnected by the resulting overlap
of the photographs. Therefore, having six unknownsbper station, a 30 x 30
submatrix was chosen, which always contalns such a group of unknown orientation
pﬁfaigtera, es they belong to flve consecutive camers stations. This partial
#ystem-ia now displaced along the strip by one statlon each time. Thus, for &
strip with n photographs one obtains (n-4) such submatrices and consequently
by. inversion of fhesé"éubmatrices one obtains five values for each of the
orientétion parameters with the exception of the first and last four photographs, .
where accordingly fewef values are oﬁtained. The arithmetic means of the roots
of the individual parameters are now computed and considered as the result of
any.one lteration cycle. The approximation resﬁlts thus obtalned are used to
continie the computation according to the Gauss-Seldel relaxation method, by
changling the original absclute column, taking into account the coefficlents not
incorporated in the individual 30 x 30 submatrices, together with the values of
the corresponding orientation pérameters, as obtailned in the preceding iteration
cycle. The iteration is continued until the roots have converged to a pre-
est&blished accuracy level.  For the econonmy of the solution, it 1s of importance
that only in the first iteration cycle the individual submatrices must be in-
verted. The roots 1n the following cyc%ps are then determined by multiplying
the individusal inverses by the changed absolute columns.

IX. GSUMMARY AND CONCLUSIONS

The anelytical solution for the general problem of photogrammetry, as
presented in this report, is not restricted by geometrical or statistical
conslderations, because‘all nilne geometricel parameters which characterize a
.central_perépective can be introdﬁced for any number of photogrephs. (Compare
[16]). Furthermore, provisions have been made to comsider all types of measure-
ments, as they may arise, as erroneous.' A least squares treatment results in
'the most probable values of the.unknowns of the solution, provided that the
residual errors are normally distributed and the various bundles of rays are

generated aécor@ing to the principle of the cent:al'pérspeptive.

76



Physical influences, which deform the central perspective bundles and

- therefore devaluate the condition of collineérity (compare Chapter IIL), are
lens distortion and refraction. The lens distortion can be determined elong
with the geometrical parsmeters (See Chapter VI). Star or collimator pho-
tography, in connection with the analytical treatment of an individual photo-
graph, provides & practicelly unbiesed means of determining the calibration

of such a camera; that is, its Interlor orientation and the specific lens
distortion. The simultaneously obtained elements of exterlor orientatioﬁ allow
the calibration of phototheodolites or the establishment of the mutual relation
between several cameras as, e.g., 1s necessary inAconnection with the use of a’

sun camera. (See Chepter IV-C)

Besed on practical experience,'it can be generally stated that the analyti-
cal treatment appears to be an excellent means for analyzing objectively the

'components of the photogrammetric measuring method.

If refraction can not be eliminated by & sultable arrangement of the
measuring set-up, its influence mist be eliminated for each individual ray,
meking use of speclific meteorological measurements or assuming & certain model
.of.the‘atmosphere. Information concerning the computation of the corresponding-
corrections and thelr consideration in the analytlcal reductlion method is glven
in Chepter VII.

Tgnoring the economical side of the problem, 1n precision photogrammetry.
1y of the emulsion carrier

can be satisfied by the use of precision ground glass plates. The unavoidsble
irreguler shrinkage of the emulsion, together with the measuring errors on the
t

o]
(=3
[
o
]
=
i
[¢]
ot
[0}
(=]
o
el
i~
(1]
[ler]
el
E

errors, which have a dilstribution simllar to & normael distribution, thus Jjusti-
fying the effort of a rigorous least squares treatmént. Such a computing
technique will alsgo prove to be practical in cases where systematlic errors are
present. Not only does a least sguares solution in any case produce the most
likely result, but additionally cobtained gualitative and quantitative infor-
mation allows one to recognize and isolate systematic errors. In addition,

.the least squares treatment, as described in thia report, 1s simple, due to -

1T



the simplicity of the mathematicel model on which the general photogrammetric
golution is based. Thus, the least squares solution, can be considered an

economical technique for intersecting corresponding rays of various bundles.

A comparison of this report withL 21 , Shows that the present approach
dilstinguishes itself from the former one only by the way in which the elimi-
nation of the unknown coordinates of tﬁ; model X is accomplished. In the
present solution, this elimination of unknowns is not performed algebrailcally
' before the observation equations are formed but during the process'of forming
’%he reduced normal equations. Consequently, the system of reduced normal. : |
equations (formula (37)) agrees, to all but second order terms, which have been.
heglected during the process of linearization by the Teylor serles, with the

cofresponding_norm&l eguation system of the formerly:published soluﬁion. 'Tﬁe
adventage of the present solution can be seen in the simple and systemstic flow
of the computatlons. It 1s possib®y, to treat all cases of practical analytical {
photogrammetry wlth but one basic computing scheme;‘thus simplifying consider- |
ably the "bookkeéping effort" in the electronic computer.

A critical study of the indivual steps of the presented solution leads
to & cénclusion which, although somewhat discouraging for the author, may en- .
cdur&ge the application of analytical phofoérammetry. It becomes obvious that
the enalytical treatment of photogrammetric pfoblema does not eell for any new
manipulstions in phopogfammetric theory or statisticel treatment of errors. o

The expresslons, representing the basis of the whole solution, derived in
equations (11) and (12), as they exist between the coordinstes of the model and

the corresponding coordinates of the images, are the well-known formules derived . ;
by v. Gruber 1in [lh] end the corresponding lnverse functions, The partial differ=;
ential quotients necessary to form the observation ‘equations (15), given with:
formulas (40) and (41) are the same expressions that are found in [1] or [2] ;

the unmodified use of these expressions appears Jjustified due to the simplicity |

cah

of thelr construction. The system of normal equations (2;) resulting from the
system of observational equations (18) is 1dentical, es mentioned before, with
the solution given by Helment 1in [h]'. The elimination of the vectors, K in
the system of normal‘equatiOns (21), Ay in the system (35), and the reduction
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of the normal equation system for an unlimited strip as shown in Fig. (16),
(formula (127)), are performed with & cert

in sequence of matrix operations

formilas (22) to (30).. This technique however, 1s as shown by Gotthardt in

[15]none other than the classic Gaussion elimination for two unknowns,
applied to matrix calculus. The alternate solution for solving the sjstem

a
4
-

of normal equations of a strip or block triangulation using an lterative
approach, 1s based .on the Gauss-Seldel Relaxation method[l?],in connection
with a procedure which has proven useful in similar applications, known as
"Smoothing with Moving Arcs."

Consequently, the knowledge of the classical geometrical considerations
dealing with a central projJection, and e certain familiarity with the method
of leasf squares adjustment, as applied in geodesy, suffice to solve the ana-
lytical problems arising from the application of photogrammetric meesuring
systems.

As previously mentioned, the system of normal eguations (35) schematically
shown in Fig. 4, is typlcal for the most general problem of analyticel photo-
gfammetry, The system 1s readil& accumilated because the corresponding obser-

. vational equations are based on the simplest geometrical model concelvable,
expressing for asny type of control point the condition .of collinearity between
control point, center of projlection and image point. The problem of arriving
at the most economical and feasible method of reduction in analyticel photo-
grammetry 1s, theréfore, concerned with the process of deterrdning the roots

of this normel eguation system. The solution presented in this report is
‘based on the formation of a system of reduced normal equations (formulas (37)
or (38)) by a rigorous mathematical method. The attractiveness of the solution
arises from the presence of a series of separated square matrices along the
main diagonal. Thig feature, however, is lost in the resulting system of
reduced normal equations, where, qulte obviously, all the remaining unknowns
are more Or less correlaeted, depending on the geometrical arrangement of the
cameras., Any attempt to further simpiify the process of determining the roots
of the normal equation system (35) as it is readily seen from Fig. 4, must try
to preserve all of the fully separated aquare matrices along the main diagonal
during & complete computational cycle. Such a result 1s obtalned 1f a compu-
tational cycle, using the relaxatlon technliques, 1s established around the polnt

19



wh:l:ch separates the unknown parameter corrections associated with the model
A_x from those a.ssocia.ted with the ca.méralorientations AO Assuning,
as a first step, éO a null vector, one cbtalns a Ax vector by a series
of inversions of 5x3 matrices, each of which contains the coordinate cor-
rections of a single control point. Multiplying this A, vector with the
submatrix; BL(AP-‘AT)-'BX , and adding this result t6 the absolute column,
BB(AP-lA }nl.ﬂ ), & AO vector cen be computed by ilnversions of a serles of
maximm (9x9) matrices, each of which contains the corrections to the orien-
tation elements of a single camera. This nev AO vector 1s multiplied with |
the submatrix, B;(AP-IAT)-l BO’ and a.dded to the absolute column, B‘;(AP-W.)-'E
and a pew .A_x ‘vector 1s computed using the aforementioned computational steps,
which in turn lead to the computation of a new AO vector, This method will
converge although very reluctantly. A geometrical analogue of such a solution,
although not éntirely descriptive, lemds to the following approach. Starting
with. certaln approximations for the orientation parameters, seta of coSi-dinates
of all points of the model are computed with formulas (56) and (57), which may
be subjected to an after-treatment according to formula (39) with Ay as null
vector.” In any case, the maximum size of the‘ matrix which must be inverted is
(3x3). With the thus obtained spatial .coordinates of all pointé of the model,
a Series of resections in space i1s computed, thus obtaining the orientations

of all cameras. In these computations, matrices of (9x9) maximum size must be
inverted. With the thus computed orientation parameters, a new set of coordi-
nates of the model are cromjputed, on vwhich a new set of camera orientations can
be thased. 'By repeating these two phases ; alternately, the finai orientations
and eorrespondingly, the final coordinates of &1} measured points of the model
can be computed. Again, the convergence 1s extremely slow., An increase in -
the slope of convergence would remedy this situation. The assoclated nume'ricatlT
effort may be considerable. Such methods are described in [17]. On the other
hand the development of electyonic computers progresses at an Iimpressive rate,
with respect to both storage facilities and computing speeds, In the near
future, it should be ﬁossible to handle, aconomically, numerical solutions
requiring & very large‘ number of iteration cycles‘. It is believed that this ..
‘situation will make posa@ﬁle a solution based on relaxation techniques for the
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general photogrammetric problem. This remark is made especlally with respect

to the anslytical treatment of an extended block, where the approach as outlined
in this report still leads to a rather bulky matrix of normal equations, &as
shown in Pig. 17. '

Conecluding, it appears that the problem of analytical photogrammetry today
requires concentration not so much on the problem of the numerical treatment of
the measured plate coordinates, but more on the technical difficulties associ-

ated with problems of identifying and measuring precisely the contents of

lecewwnsr 4. Lerees.

HELIMUT H. SCHMID

photographs.
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